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Abstract

This paper reconsiders finite variable reductions of the universal Whitham
hierarchy of genus zero in the perspective of dispersionless Hirota equations.
In the case of one-variable reduction, dispersionless Hirota equations turn
out to be a powerful tool for understanding the mechanism of reduction.
All relevant equations describing the reduction (Löwner-type equations and
diagonal hydrodynamic equations) can be thereby derived and justified in a
unified manner. The case of multi-variable reductions is not so straightforward.
Nevertheless, the reduction procedure can be formulated in a general form, and
justified with the aid of dispersionless Hirota equations. As an application,
previous results of Guil, Mañas and Martı́nez Alonso are reconfirmed in this
formulation.

PACS number: 02.30.Ik
Mathematics Subject Classification: 35Q58, 37K10

1. Introduction

The Löwner equation [1] is a differential equation that describes a family of deformations
(with parameter λ) of univalent conformal maps gλ : D → Bλ from a fixed disc D ⊂ CP1 to
a simply connected domain Bλ = B \�λ ⊂ CP1 with a slit formed by a continuously growing
arc �λ on a fixed curve �. gλ is the inverse of a univalent conformal map fλ : Bλ → D whose
existence is ensured by Riemann’s mapping theorem. For technical reasons, we assume that D
is centered at ∞, B contains ∞ in its interior, and gλ(∞) = ∞. To write the Löwner equation,
let us express the maps gλ and fλ in terms of coordinates as z = g(p, λ) and p = f (z, λ).
The Löwner equation thereby reads

∂f (z, λ)

∂λ
= f (z, λ)

κ(λ) + f (z, λ)

κ(λ) − f (z, λ)

∂φ(λ)

∂λ
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for f (z, λ) and

∂g(p, λ)

∂λ
= p

p + κ(λ)

p − κ(λ)

∂g(p, λ)

∂p

∂φ(λ)

∂λ

for g(p, λ). (As one can easily see, these two equations are equivalent.) κ(λ) and φ(λ) are
auxiliary functions that are determined by (and, conversely, determine) the deformations of
the maps. κ(λ) is called a ‘driving force’, and φ(λ) is related to the behavior of g(p, λ) and
f (z, λ) at infinity:

g(p, λ) = eφ(λ)p + O(1) (p → ∞),

f (z, λ) = e−φ(λ)z + O(1) (z → ∞).

A few variants of the Löwner equation are also known. Firstly, one can consider a
family of univalent conformal maps gλ to a domain Bλ with multiple slits of arcs on several
fixed curves �1, . . . , �M . Since the arcs can grow independently, this family depends on M-
dimensional parameters λ = (λ1, . . . , λM). The univalent homomorphic functions g(p,λ)

and f (z,λ) representing gλ and its inverse fλ satisfy a system of Löwner-like equations

∂f (z,λ)

∂λj

= f (z,λ)
κj (λ) + f (z,λ)

κj (λ) − f (z,λ)

∂φ(λ)

∂λj

,

∂g(p,λ)

∂λj

= p
p + κj (λ)

p − κj (λ)

∂g(p,λ)

∂p

∂φ(λ)

∂λj

, j = 1, . . . , M,

with respect to λj ’s. Secondly, one can choose the upper half plane H rather than the disc, and
consider univalent conformal maps gλ from H to a simply connected domain Bλ with ∞ on its
boundary. The holomorphic functions g(p,λ) and f (z,λ) representing these maps satisfy a
pair of differential equations called the ‘chordal Löwner equation’ (see below). This equation,
too, has multi-slit analogues.

Remarkably, these Löwner-type equations also emerge in finite variable (or finite field)
reductions of various dispersionless integrable systems. This fact was first discovered by
Gibbons and Tsarev in the case of the Benney equations [2, 3]. g(p,λ) shows up therein
as a generating function g(p) of the Benney moments, and the equations of motion of those
moments are converted to an evolution equation for g(p). This evolution equation can be
identified with the Lax equation of the second flow of the dispersionless KP hierarchy. Gibbons
and Tsarev observed that a general M-variable reduction of this system can be obtained in the
following form:

(1) g(p) depends on the spacetime variable (x, t) of the Benney equations via M reduced
variables λ = (λ1, . . . , λM) as

g(p) = g(p,λ), λ = λ(x, t).

(2) g(p,λ) satisfies the chordal Löwner equations

∂g(p,λ)

∂λj

= 1

p − Uj(λ)

∂g(p,λ)

∂p

∂a(λ)

∂λj

, j = 1, . . . ,M,

of domains Bλ with M slits. The inverse function f (z,λ) of g(p,λ) satisfies the dual
equations

∂f (z,λ)

∂λj

= 1

Uj(λ) − f (z,λ)

∂a(λ)

∂λj

, j = 1, . . . ,M.

Uj (λ) and a(λ) are auxiliary functions that determine the reduction. Uj(λ)’s are called
driving forces, and a(λ) is related to the asymptotic behavior of g(p,λ) and f (z,λ) at
infinity.
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(3) λj ’s satisfy a system of ‘diagonal’ hydrodynamic equations

∂λj

∂t
= χj (λ)

∂λj

∂x
, j = 1, . . . ,M.

Thus λj ’s are ‘Riemann invariants’ of the reduced system. The ‘characteristic speeds’
χj (λ) turn out to satisfy a set of conditions, which enables one to solve these equations
by Tsarev’s generalized hodograph method [4].

This result has been generalized to many other cases [5–11]. Recently this issue is also studied
from the point of view of Hamiltonian structures [12].

In this paper, we address the problem of finite variable reductions of the universal Whitham
hierarchy of genus zero [13]. This issue was studied by Guil et al [9], and the relevance of
Löwner-type equations was already recognized therein. We reconsider this issue in a new
perspective based on the dispersionless Hirota equations. As demonstrated in the case of
the dispersionless KP and Toda hierarchies [11], the dispersionless Hirota equations can be
a powerful tool for studying finite variable reductions of dispersionless integrable systems.
The goal of this paper is to generalize this observation to the case of the universal Whitham
hierarchy.

This paper is organized as follows. Section 2 is a brief review of the universal Whitham
hierarchy of genus zero. Sections 3 and 4 deal with one-variable reduction. In section 3, we
derive Löwner-type equations and diagonal hydrodynamic equations as necessary conditions
for one-variable reduction. In section 4, we show that the hydrodynamic equations can be
solved by the hodograph method, and lastly confirm that the Löwner-type equations and
the hydrodynamic equations are sufficient to determine a solution of the universal Whitham
hierarchy. Sections 5–7 are devoted to multi-variable reductions. In section 5, we examine
‘rational reduction’ (or ‘algebraic orbits’) of the universal Whitham hierarchy as a prototype
of multi-variable reductions. Following the lines illustrated therein, we formulate a general
form of multi-variable reduction in section 6, and reconsider the results of Guil et al [9] on
the basis of this formulation. Section 8 is a summary of our results.

2. Universal Whitham hierarchy of genus zero

This section is a collection of basic notions and results on the universal Whitham hierarchy of
genus zero picked out from the literature [13–16].

2.1. Lax equations

We consider the universal Whitham hierarchy of genus zero with N + 1 marked points on
a Riemann sphere with coordinate p [13]. One of the marked points are fixed to p = ∞;
the others p = q1, . . . , qN are part of the dynamical variables of the hierarchy. The other
dynamical variables are the coefficients of the Laurent series

z0(p) = p +
∞∑

j=2

u0jp
−j+1,

(1)

zα(p) = rα

p − qα

+
∞∑

j=1

uαj (p − qα)j−1 (α = 1, . . . , N),

which are assumed to converge in domainsD0 andDα (or asymptotic expansion of holomorphic
functions at the boundary points p = ∞ and p = qα of such domains). These Laurent series
are dispersionless analogues of the Lax operators in dispersive integrable hierarchies.
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In this setup, the universal Whitham hierarchy has N + 1 series of time variables tαn

(n = 1, 2, . . . for α = 0 and n = 0, 1, . . . for α = 1, . . . , N ). Let us use t to denote these
time variables collectively, namely,

t = (t01, t02, . . . , t10, t11, . . . , tN0, tN1, . . .).

The lowest variables t01, t10, . . . , tN0 in each series tαn, α = 0, 1, . . . , N , play a special role.
In particular, t01 should be interpreted as a spatial variable rather than a time variable. In a
sense, t10, . . . , tN0, too, are a kind of spatial variables, which originate in charge variables
of an N + 1-component charged fermion system [16]. For convenience, we introduce the
auxiliary variable

t00 = −
N∑

α=1

tα0.

(This stems from the constraint of total charge being zero.) We also use the abbreviation

∂αn = ∂/∂tαn.

for the derivatives in the time variables.
Time evolution of the system is defined by the dispersionless Lax equations [13]

∂αnzβ(p) = {
αn(p), zβ(p)} (α, β = 0, 1, . . . , N) (2)

with respect to the two-dimensional Poisson bracket

{f, g} = ∂f

∂p

∂g

∂t01
− ∂f

∂t01

∂g

∂p
(3)

on the (p, t01) space. Thus p is a conjugate variable of t01, in other words, classical limit of the
‘momentum’ ∂01 in a one-dimensional quantum mechanical system. 
0n(p)’s and 
αn(p)’s
for n � 1 are polynomial in p and (p − qα)−1,


0n(p) = pn + a0n2p
n−2 + · · · + a0nn,


αn(p) = aαn0

(p − qα)n
+

aαn1

(p − qα)n−1
+ · · · +

aαnn−1

(p − qα)
,

and given by the singular part of Laurent expansion of z0(p)n and zα(p)n (including the
constant term for the former):

z0(p)n = 
0n(p) + O(p−1) (p → ∞),

zα(p)n = 
αn(p) + O(1) (p → qα).
(4)

The first few of them read


01(p) = p, 
02(p) = p2 + 2u02, . . . ,


α1(p) = rα

p − qα

, 
α2(p) = r2
α

(p − qα)2
+

2rαuα1

p − qα

, . . . .


α0(p)’s are exceptional and given by logarithmic functions:


α0(p) = − log(p − qα). (5)

2.2. S-functions and Hamilton–Jacobi equations

We now introduce a set of new variables to extend the foregoing Lax equations to a larger
system.
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The first set of new variables are ‘conjugate variables’ of zβ(p)’s [14, 15], which play
the role of the Orlov–Schulman operators in the present setup. As a consequence of the Lax
equations, 
αn(p)’s satisfy the dispersionless Zakharov–Shabat equations [13]

∂βn
αm(p) − ∂αm
βn(p) + {
αm(p),
βn(p)} = 0 (α, β = 0, 1, . . . , N). (6)

They can be packed into the equation

ω ∧ ω = 0 (7)

for the closed 2-form

ω =
∞∑

n=1

d
0n(p) ∧ dt0n +
N∑

α=1

∞∑
n=0

d
αn(p) ∧ dtαn,

where ‘d’ stands for exterior differentiation with respect to both t and p. By Darboux’s
theorem, ω can be expressed in a canonical form with two ‘Darboux variables’. One can
choose zβ(p) as one of the Darboux variable; let ζβ(p) denote the conjugate variable:

ω = dzβ(p) ∧ dζβ(p) (β = 0, 1, . . . , N). (8)

This equation implies that ζβ(p)’s satisfy Lax equations of the same form

∂αnζβ(p) = {
αn(p), ζβ(p)} (α, β = 0, 1, . . . , N) (9)

as zβ(p)’s, along with the canonical Poisson relations

{zβ(p), ζβ(p)} = 1 (β = 0, 1, . . . , N). (10)

Having introduced ζβ(p)’s, we can now introduce a second set of new variables Sβ(p),

β = 0, 1, . . . , N , which are called ‘S-functions’ [9, 13–15]. To this end, we rewrite (8) as

d(θ + ζβ(p) dzβ(p)) = 0,

where

θ =
∞∑

n=1


0n(p) dt0n +
N∑

α=1

∞∑
n=0


αn dtαn.

The S-function Sβ(p) is defined as a potential of θ + ζβ(p) dzβ(p):

θ + ζβ(p) dzβ(p) = dSβ(p). (11)

Though one can find these S-functions as Laurent series of p (for β = 0) or of (p − qα)−1 (for
β = 1, . . . , N ), it is more convenient to consider them as Laurent series in zβ(p). In such an
expression, they can be expanded as

S0(p) =
∞∑

n=1

t0nz0(p)n + t00 log z0(p) −
∞∑

n=1

z0(p)−n

n
v0n,

(12)

Sβ(p) =
∞∑

n=1

tβnzβ(p)n + tβ0 log zβ(p) + φβ −
∞∑

n=1

zβ(p)−n

n
vβn,

where the coefficients v0n, vβn and φβ are functions of t. We can rewrite this expression as

S0(p) = S0(z0(p)), Sβ(p) = Sβ(zβ(p))

by introducing the functions

S0(z) =
∞∑

n=1

t0nz
n + t00 log z −

∞∑
n=1

z−n

n
v0n,

(13)

Sβ(z) =
∞∑

n=1

tβnz
n + tβ0 log z + φβ −

∞∑
n=1

z−n

n
vβn

of z. These Sβ(z)’s, too, are called ‘S-functions’.

5
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In a sense, the second set of S-functions Sβ(z) is more fundamental. They satisfy the
Hamilton–Jacobi equations [9, 13]

∂αnSβ(z) = 
αn(∂01Sβ(z)) (α = 0, 1, . . . , N), (14)

which are quasiclassical limit of the (scalar-valued) auxiliary linear equations of the underlying
multi-component KP hierarchy [16]. Moreover, the t01-derivative

pβ(z) = ∂01Sβ(z)

gives the inverse function of z = zβ(p), namely,

zβ(pβ(z)) = z, pβ(zβ(p)) = p. (15)

We can derive a simple relation among qβ, rβ and φβ, vβ1 from these remarks. The
foregoing Laurent expansion of the S-functions implies that p0(z) and pβ(z) (β = 1, . . . , N)

behave as

p0(z) = z + O(z−1), pβ(z) = ∂01φ0 + ∂01vβ1z
−1 + O(z−2)

as z → ∞. Since the inverse function p = pβ(z) of

z = zβ(p) = rβ

p − qβ

+ O(1)

should coincide with this expression of pβ(z), we find that

qβ = −∂01φβ, rβ = −∂01vβ1. (16)

On the other hand, the Hamilton–Jacobi equations for tα0 take such a form as

∂α0Sβ(z) = − log(∂01Sβ(z) − qα) = − log(pβ(z) − qα),

which can be solved for pβ(z) as

pβ(z) = qα + e−∂α0Sβ(z).

Letting α = β and recalling the Laurent expansion of Sβ(z), we find that

pβ(z) = qβ + e−∂α0φ0z−1 + O(z−2).

This gives another expression of rβ :

rβ = e−∂α0φα . (17)

2.3. F-function and Hirota equations

We now introduce the F-function F = F(t) (logarithm of the quasiclassical τ function [13])
as a solution of the equations

∂0nF = v0n, ∂αnF = vαn,
(18)

∂α0F = −φα +
α∑

β=1

tβ0 log(−1), α = 1, . . . , N,

where log(−1) is understood to be equal to, say, π i, though the choice of the branch is
irrelevant in the final result. (This definition of the F-function [16] is slightly different from
that of Mañas et al [14, 15], but this does not affect the main part of results.) This strange
factor is related to the signature factors εαβ that we shall encounter below.
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All relevant quantities of the hierarchy can be expressed in terms of the F-function. In
particular, the S-functions have a very compact expression:

S0(z) =
∞∑

n=1

t0nz
n + t00 log z − D0(z)F,

(19)

Sα(z) =
∞∑

n=1

tαnz
n + tα0 log z + φα − Dα(z)F,

where

D0(z) =
∞∑

n=1

z−n

n
∂0n, Dα(z) =

∞∑
n=1

z−n

n
∂αn.

Consequently, the p-functions, too, can be neatly expressed as

p0(z) = z − ∂01D0(z)F, pα(z) = −∂01(Dα(z) + ∂α0)F . (20)

The z-functions do not have such a simple expression, but one can determine the Laurent
coefficients uαn order by order. For example, let us derive an expression of u02, qα, rα . The
first few terms of the foregoing expression of the p-functions read

p0(z) = z − ∂2
01Fz−1 + O(z−2), pα(z) = −∂01∂α0F − ∂01∂α1Fz−1 + O(z−2).

On the other hand, as the inverse function of

z0(p) = p + u02p
−1 + O(p−2), zα(p) = rα

p − qα

+ O(1),

p0(z) and pα(z) should have Laurent expansion of the form

p0(z) = z − u02z
−1 + O(z−2), pα(z) = qα + rαz−1 + O(z−2).

Thus we find that

u02 = ∂2
01F, qα = −∂01∂α0F, rα = −∂01∂α1F . (21)

Note that this expression of qα and rα can also be derived from (16).
When the universal Whitham hierarchy is viewed as dispersionless (or quasiclassical)

limit of the (charged) multi-component KP hierarchy [16], the F-function is identified with
the limit of logarithm of the tau function. One can thereby derive the ‘dispersionless Hirota
equations’ (or, more appropriately, ‘dispersionless differential Fay identities’)

eD̂0(z)D̂0(w)F = 1 − ∂01(D̂0(z) − D̂0(w))F
z − w

,

z eD̂0(z)D̂α(w)F = z − ∂01(D̂0(z) − D̂α(w))F, (22)

eD̂α(z)D̂α(w)F = −zw∂01(D̂α(z) − D̂α(w))F
z − w

,

εαβ eD̂α(z)D̂β (w)F = −∂01(D̂α(z) − D̂β(w))F (α �= β)

for α, β = 1, . . . , N , where

D̂α(z) =
{
D0(z) (α = 0),

Dα(z) + ∂α0 (α �= 0),
εαβ =

{
+1 (α � β),

−1 (α > β).

The signature factor εαβ stems from a fermionic representation of the tau functions of the
multi-component KP hierarchy [17, 18].

These dispersionless Hirota equations are equivalent to the universal Whitham hierarchy
itself [16]. This is a generalization of the results known for the dispersionless KP and
Toda hierarchies [19–22]. The notion of Faber polynomials and Grunsky coefficients, which
originate in complex analysis, play a crucial role here.

7
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2.4. Faber polynomials and Grunsky coefficients

Faber polynomials and Grunsky coefficients are hidden in the foregoing setup of the universal
Whitham hierarchy.

First of all, 
0n(z) and 
αn(z) are nothing but the Faber polynomials of p0(z) and pα(z),
respectively [16]. Namely, these ‘polynomials’ (in p and in (p − qα)−1, respectively) are
characterized by the following generating functions:

log
p0(z) − q

z
= −

∞∑
n=1

z−n

n

0n(q),

(23)

log
q − pα(z)

q − qα

= −
∞∑

n=1

z−n

n

αn(q).

Moreover, differentiating these generating functions by q yields the generating functions

1

q − p0(z)
= −

∞∑
n=1

z−n

n

′

0n(q),

(24)
1

q − pα(z)
− 1

q − qα

= −
∞∑

n=1

z−n

n

′

αn(q)

for the derivatives


′
0n(q) = ∂
0n(q)

∂q
, 
′

αn(q) = ∂
αn(q)

∂q
.

It will be more suggestive (and convenient) to rewrite the second equation of (24) as

1

q − pα(z)
= −

∞∑
n=1

z−n

n

′

α0(q) − 
′
α0(q). (25)

These types of identities are called ‘kernel formulae’ in the literature [23, 24] (because the left-
hand side may be thought of as a Cauchy kernel), and shown to be useful in some applications
of dispersionless Hirota equations such as ‘associativity equations’ [20, 24].

Grunsky coefficients show up when we use (20) to rewrite the right-hand side of the
dispersionless Hirota equations (22) as

1 − ∂01(D̂0(z) − D̂0(w))F
z − w

= p0(z) − p0(w),

z − ∂01(D̂0(z) − D̂α(w))F = p0(z) − pα(w),

−zw∂01(D̂α(z) − D̂α(w))F
z − w

= zw(pα(z) − pα(w))

z − w
,

−∂01(D̂α(z) − D̂β(w))F = pα(z) − pβ(w),

and consider the logarithm of both hand sides of each equation. Equations (22) thus turn into
the following equations:

D̂0(z)D̂0(w)F = log
p0(z) − p0(w)

z − w
,

D̂0(z)D̂0(w)F = log
p0(z) − pα(w)

z
,

(26)
D̂α(z)D̂α(w)F = log

zw(pα(z) − pα(w))

z − w
,

D̂α(z)D̂β(w)F = log
pα(z) − pβ(w)

εαβ

(α �= β).

8



J. Phys. A: Math. Theor. 41 (2008) 475206 K Takasaki and T Takebe

As one can show using the definition of the Faber polynomials (23), these equations are,
actually, a generating functional representation of the Hamilton–Jacobi equations (14); this
fact lies in the heart of the aforementioned equivalence of the dispersionless Hirota equations
and the universal Whitham hierarchy.

The right-hand side of (26) is nothing but generating functions of the (generalized)
Grunsky coefficients bαmβn of the p-functions:

log
p0(z) − p0(w)

z − w
= −

∞∑
m,n=1

z−mw−nb0m0n,

log
p0(z) − pα(w)

z
= −

∞∑
m=1

∞∑
n=0

z−mw−nb0mαn,

(27)

log
zw(pα(z) − pα(w))

z − w
= −

∞∑
m,n=0

z−mw−nbαmαn,

log
pα(z) − pβ(w)

εαβ

= −
∞∑

m,n=0

z−mw−nbαmβn (α �= β).

In particular, the z−1 terms of the first and second equations yield the identities

w − p0(w) =
∞∑

n=1

w−nb010n, −pα(w) = −
∞∑

n=0

w−nb01αn. (28)

One can thus recover the p-functions from the Grunsky coefficients.
Equations (26) show that all second derivatives of the F-function are given by the Grunsky

coefficients as

∂̂αm∂̂βnF = −bαmβn (α, β = 0, 1, . . . , N), (29)

where we have introduced the rescaled derivatives

∂̂αn =
{

1
n
∂αn (n �= 0),

∂α0 (n = 0).

Conversely, one can use (29) as defining equations of F. In that case, the Grunsky coefficients
have to satisfy a set of integrability conditions:

∂̂γ nbαlβm = ∂̂αlbγ nβm. (30)

Once those integrability conditions are shown to be satisfied, one can obtain the F-function as
a solution of these equations. Moreover, this simultaneously ensures that the dispersionless
Hirota equations are also satisfied, because (29) are, after all, the dispersionless Hirota
equations in disguise. This method for showing the existence of the F-function was first
developed for the case of the dispersionless KP and Toda hierarchies [11]. We shall apply this
method to reductions of the universal Whitham hierarchy.

3. Löwner-type equations in one-variable reduction

In the setup of one-variable reduction, the dynamical variables uαn (n = 0, 1, . . . , uα0 = rα)

and qα are assumed to depend on t via a single function λ = λ(t) as

uαn = uαn(λ(t)), qα = qα(λ(t)).

9
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Consequently, zα(p) and pα(z) are thought of as functions of p and λ(t):

zα(p) = zα(p, λ(t)), pα(z) = pα(z, λ(t)).

The goal of this section is to derive the following:

Theorem 1. If uαn and qα are functions of a single variable λ = λ(t), then there is a function
U = U(λ) of λ such that pα(z) = pα(z, λ) and zα(p) = zα(p, λ), α = 0, 1, . . . , N , satisfy
the Löwner-type equations

∂pα(z)

∂λ
= 1

U − pα(z)

∂u02

∂λ
, (31)

∂zα(p)

∂λ
= z′

α(p)

p − U

∂u02

∂λ
, (32)

where z′
α(p) denotes the p-derivative

z′
α(p) = ∂zα(p)

∂p
.

Moreover, λ = λ(t) satisfies the hydrodynamic equations

∂αnλ = χαn(λ)∂01λ (33)

with characteristic speeds

χαn(λ) = 
′
αn(U).

This theorem is a generalization of the one-variable reduction of the KP and Toda
hierarchies [11]. Let us explain some implications:

(1) In a quite general situation as the theorem assumes, we can say nothing about the shape
of the domain of pα(z) (equivalently, the range of zα(p)) and the position of U therein.
In particular, it is a priori not evident whether the domain of pα(z) is a slit domain like
that assumed in the original setup of the Löwner equation. Since the reduction defined by
(31) and (32) seems to be meaningful in such a general situation (cf various solutions of
Löwner-type solutions known in the literature [5–11]), we do not restrict our consideration
to slit domains.

(2) All equations of (31) and (32) have a common driving force U. In particular, (32) mean
that zα(p)’s satisfy an identical linear differential equation of the form(

∂

∂λ
− 1

p − U

∂u02

∂λ

∂

∂p

)
zα(p) = 0.

By the classical theory of characteristics, this implies that zα(p)’s are mutually
functionally related. Namely, there are functions fα(z) of one variable z such that

zα(p) = fα(z0(p)), α = 1, . . . , N. (34)

This agrees with the setup of reductions by Guil et al [9], though they assume the special
form

fα(z) = 1

z − cα

, (35)

where cα’s are constants.
(3) Equations (33) determine the time evolution of the reduced dynamical variable λ = λ(t).

The whole hierarchy is thus reduced to the hydrodynamic equations (33) with Riemann
invariant λ and characteristic speeds χαn(λ). These hydrodynamic equations can be solved
by the hodograph method (see theorem 2).

10
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(4) It is not obvious from the subsequent proof that the converse of the statement of the
theorem also holds. Therefore one has to show, separately, that (31) (or (32)) and (33)
lead to a solution of the universal Whitham hierarchy. We shall do it with the aid of the
dispersionless Hirota equations (see theorem 3).

3.1. Proof of theorem 1: step 1

Differentiating both hand sides of the first equation of (26) by t01 yields the equation

∂01D0(z)D0(w)F = ∂01p0(z) − ∂01p0(w)

p0(z) − p0(w)
.

Note that D̂0(z) = D0(z). Let us rewrite this equation as

p0(z) − p0(w) = ∂01p0(z) − ∂01p0(w)

∂01D0(z)D0(w)F
= − ∂01p0(z)

D0(w)p0(z)
+

∂01p0(w)

D0(z)p0(w)
.

We have used (20) to rewrite the denominator ∂01D0(z)D0(w)F as

∂01D0(z)D0(w)F = −D0(w)p0(z) = −D0(z)p0(w).

By the chain rule, we can express the derivatives on the right-hand side as

∂01p0(z) = ∂p0(z)

∂λ
∂01λ, ∂01p0(w) = ∂p0(w)

∂λ
∂01λ,

D0(w)p0(z) = ∂p0(z)

∂λ
D0(w)λ, D0(z)p0(w) = ∂p0(w)

∂λ
D0(z)λ.

Hence last equation reduces to

p0(z) − p0(w) = − ∂01λ

D0(w)λ
+

∂01λ

D0(z)λ

or, equivalently,

p0(z) − ∂01λ

D0(z)λ
= p0(w) − ∂01λ

D0(w)λ
.

Therefore both hand sides of this equation are independent of z and w. Let U0 = U0(λ) denote
this quantity:

p0(z) − ∂01λ

D0(z)λ
= U0. (36)

On the other hand, applying D0(z) to both hand sides of the first formula of (21) and
using (20) yield the identity

D0(z)u02 = ∂2
01D0(z)F = −∂01p0(z).

Again by the chain rule, the derivatives on both hand sides can be expressed as

D0(z)u02 = ∂u02

∂λ
D0(z)λ, ∂01p0(z) = ∂p0(z)

∂λ
∂01λ.

Thus we find that
∂01λ

D0(z)λ
= − ∂u02/∂λ

∂p0(z)/∂λ
. (37)

We can use (37) to rewrite the foregoing equation (36) as

p0(z) +
∂u02/∂λ

∂p0(z)/∂λ
= U0.

This implies that p0(z) satisfies the Löwner-type equation
∂p0(z)

∂λ
= 1

U0 − p0(z)

∂u02

∂λ
. (38)

11
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3.2. Proof of theorem 1: step 2

We can repeat almost the same calculations for the second equation of (26).
Firstly, differentiating both hand sides by t01, we obtain the equation

∂01D̂α(z)D̂α(w)F = ∂01pα(z) − ∂01pα(w)

pα(z) − pα(w)
,

which can be rewritten as

pα(z) − pα(w) = ∂01pα(z) − ∂01pα(w)

∂01D̂α(z)D̂α(w)F
= − ∂01pα(z)

D̂α(z)pα(z)
+

∂01pα(w)

D̂α(w)pα(w)
.

By the chain rule, this equation reduces to

pα(z) − ∂01λ

D̂α(z)λ
= pα(w) − ∂01λ

D̂α(w)λ
.

This implies that both hand sides are actually independent of z and w. Thus we have the
equation

pα(z) − ∂01λ

D̂α(z)λ
= Uα, (39)

where Uα = Uα(λ) is a function of λ only.
Secondly, we can derive, from the first formula of (21), the identity

D̂α(z)u02 = ∂2
01D̂α(z)F = −∂01pα(z).

By the chain rule, this identity reduces to

∂01λ

D̂α(z)
= − ∂u02/∂λ

∂pα(z)/∂λ
. (40)

Equations (39) and (40) imply that pα(z) satisfies the Löwner-type equation

∂pα(z)

∂λ
= 1

Uα − pα(z)

∂u02

∂λ
. (41)

3.3. Proof of theorem 1: step 3

Let us examine implications of the third and fourth equation of (26).
Differentiating the third equation by t01 yields the equation

p0(z) − pα(w) = − ∂01p0(z)

D̂α(w)p0(z)
+

∂01pα(w)

D0(z)pα(w)
.

By the chain rule, this equation reduces to

p0(z) − pα(w) = − ∂u02/∂λ

∂o0(z)/∂λ
+

∂u02/∂λ

∂pα(w)/∂λ
.

By (38) and (41), we can rewrite the two terms on the right-hand side as

∂u02/∂λ

∂p0(z)/∂λ
= U0 − p0(z),

∂u02/∂λ

∂pα(w)/∂λ
= Uα − pα(w).

Thus we find that

U0 = Uα, α = 1, . . . , N, (42)

namely, (38) and (41) actually have an identical driving force U.

12
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The same conclusion follows from the fourth equation of (26). Namely, differentiating
this equation by t01 eventually leads to the identities Uα = Uβ .

3.4. Proof of theorem 1: step 4

We can derive the evolution equations (33) as follows.
Let us rewrite (37) as

D0(z)λ = −∂p0(z)/∂λ

∂u02/∂λ
∂01λ = − ∂01λ

U − p0(z)

and use the identity

1

U − p0(z)
= −

∞∑
n=1

z−n

n

′

0n(U)

that can be obtained from the kernel formula (24) by letting q = U . The outcome is the
equation

D0(z)λ =
∞∑

n=1

z−n

n

′

0n(U)∂01λ.

This is a generating functional form of the equations of (33) for α = 0, n = 1, 2, . . . .

In exactly the same way, using (40) and the kernel formula for pα(z), we can derive the
equations

D̂α(z)λ = (Dα(z) + ∂α0)λ =
( ∞∑

n=1

z−n

n

′

αn(U) + 
′
α0(U)

)
∂01λ.

They are a generating functional form of the equations of (33) for α = 1, . . . , N and
n = 0, 1, . . ..

4. Solutions from one-variable reduction

4.1. Hodograph method

The hydrodynamic equations (33) can be solved by the hodograph method. The hodograph
method is extremely simplified in this case, because there is only one variable λ.

Theorem 2. Let F(λ) be an arbitrary function of λ, and λ = λ(t) a function that satisfies the
hodograph equation

∞∑
n=1

t0nχ0n(λ) +
N∑

α=1

∞∑
n=0

tαnχαn(λ) = F(λ). (43)

Further assume that the regularity condition

∞∑
n=1

t0n

∂χ0n(λ)

∂λ
+

N∑
α=1

∞∑
n=0

tαn

∂χαn(λ)

∂λ
�= ∂F (λ)

∂λ
(44)

holds for λ = λ(t). Then λ = λ(t) satisfies the hydrodynamic equations (33).

13
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Proof. We differentiate both hand sides of the hodograph equation by tαn. By the chain rule,
this yields the equations

χαn(λ) +

⎛
⎝ ∞∑

m=1

t0m

∂χ0m(λ)

∂λ
+

N∑
β=1

∞∑
m=0

tβm

∂χβm(λ)

∂λ

⎞
⎠ ∂αnλ = ∂F (λ)

∂λ
∂αnλ,

hence

χαn(λ) =
⎛
⎝∂F (λ)

∂λ
−

∞∑
m=1

t0m

∂χ0m(λ)

∂λ
−

N∑
β=1

∞∑
m=0

tβm

∂χβm(λ)

∂λ

⎞
⎠ ∂αnλ.

In particular, letting α = 0 and n = 0, we have the equation

1 =
⎛
⎝∂F (λ)

∂λ
−

∞∑
m=1

t0m

∂χ0m(λ)

∂λ
−

N∑
β=1

∞∑
m=0

tβm

∂χβm(λ)

∂λ

⎞
⎠ ∂01λ.

If we multiply the last equation by χαn(λ) and subtract it from the previous one, the outcome
is the equation

0 =
⎛
⎝∂F (λ)

∂λ
−

∞∑
m=1

t0m

∂χ0m(λ)

∂λ
−

N∑
β=1

∞∑
m=0

tβm

∂χβm(λ)

∂λ

⎞
⎠ (∂αnλ − χαn(λ)∂01λ).

By the regularity condition, we can drop the prefactor of ∂αnλ − χαn(λ)∂01λ and obtain the
hydrodynamic equations (33). �

4.2. Existence of F-function

In the last section, we derived the Löwner-type equations (31), (32) and the hydrodynamic
equations (33), but we have not confirmed the converse, namely, whether these equations
ensure that uαn = uα(λ(t)) and qα = qα(λ(t)) give a solution of the universal Whitham
hierarchy.

We now prove that the converse is also true, following the idea presented in the end of
section 2.4. This is also a generalization of the result in the case of the dispersionless KP and
Toda hierarchies [11].

Theorem 3. The integrability conditions (30) of (29) are satisfied in the foregoing setup of
one-variable reduction. The F-function F = F(t) thus defined by (29) gives a solution of the
dispersionless Hirota equations (22).

Proof. Let us first illustrate the calculations in the case where α = β = γ = 0. We substitute
z = z1 and w = z2 in the first generating function of (27), and apply D̂0(z3) = D0(z3) to both
hand sides. This yields the generating function

D0(z3)(p0(z1) − p0(z2))

p0(z1) − p0(z2)
= −

∞∑
l,m,n=1

z−l
1 z−m

2 z−n
3 ∂̂0nb0l0m

of ∂̂0nb0l0m’s. On the other hand, recall that the hydrodynamic equations (33) have a generating
functional representation (cf step 4 of the proof of theorem 1). In the case of α = 0, it reads

D0(z)λ = ∂01λ

p0(z) − U
.
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Using this equation, the Löwner-type equation for p0(z) and the chain rule, we can rewrite the
left-hand side of the foregoing generating function of ∂̂0nb0l0m’s as

D0(z3)(p0(z1) − p0(z2))

p0(z1) − p0(z2)
= D0(z3)λ

p0(z1) − p0(z2)

(
∂p0(z1)

∂λ
− ∂p0(z2)

∂λ

)

= ∂01λ

(p0(z3) − U)(p0(z1) − p0(z2))

(
1

U − p0(z1)
− 1

U − p0(z2)

)
∂u02

∂λ

= − ∂01λ

(U − p0(z1))(U − p0(z2))(U − p0(z3))

∂u02

∂λ
.

Since this quantity is symmetric in z1 and z3, we have the functional identity

D0(z3)(p0(z1) − p0(z2))

p0(z1) − p0(z2)
= D0(z1)(p0(z3) − p0(z2))

p0(z3) − p0(z2)
.

This implies the identities

∂̂0nb0l0m = ∂̂0lb0n0m

of the coefficients, which are exactly the integrability conditions (30) for α = β = γ = 0.
In much the same way, staring with one of the generating functions of (27) and applying

D̂γ (z) to it, we obtain the generating functions

D̂γ (z3)(pα(z1) − pβ(z2))

pα(z1) − pβ(z2)
= −

∑
l,m,n

z−l
1 z−m

2 z−n
3 ∂̂γ nbαlβm

of derivatives of the general Grunsky coefficients. Since the hydrodynamic equations (33)
have the generating functional form

D̂α(z)λ = ∂01λ

pα(z) − U
,

we can rewrite the foregoing generating functions as

D̂γ (z3)(pα(z1) − pβ(z2))

pα(z1) − pβ(z2)
= − ∂01λ

(U − pα(z1))(U − pβ(z2))(U − pγ (z3))

∂u02

∂λ
.

This implies the functional identity

D̂γ (z3)(pα(z1) − pβ(z2))

pα(z1) − pβ(z2)
= D̂α(z1)(pγ (z3) − pβ(z2))

pγ (z3) − pβ(z2)
,

hence the integrability conditions (30) as expected. More precisely, we have to be careful
about the difference of the four types of generating functions in (27), but this does not affect
the final conclusion. �

Let us mention that this proof reveals an interesting feature of the integrability conditions
(30). Namely, since the derivatives of the Grunsky coefficients are nothing but the third
derivatives of the F-function, the functional identities in the proof imply that these third
derivatives have a generating function of the form∑
l,m,n

z−l
1 z−m

2 z−n
3 ∂̂αl ∂̂βm∂̂γ nF = − ∂01λ

(U − pα(z1))(U − pβ(z2))(U − pγ (z3))

∂u02

∂λ
. (45)

This result is suggestive from the point of view of associativity equations [20, 24], because the
third derivatives are fundamental quantities therein. We shall see that a similar result holds in
multi-variable reductions as well.
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5. Rational reductions (algebraic orbits)

Unfortunately, it seems difficult to extend the foregoing method for the one-variable reduction
to multi-variable reductions. In the case of multi-variable reductions, we shall start from
Löwner-type equations rather than derive them. The problem is how to find a correct form of
Löwner-type equations. Though an answer to this question is presented in the work of Guil
et al [9], we dare to take a different (heuristic) route that leads to the same answer.

Our strategy is to examine rational reductions of the universal Whitham hierarchy (or
‘algebraic orbits’ in the terminology of Krichever [13]) as a prototype of general multi-
variable reductions. This class of reductions cover, for example, the Zakharov reduction of the
Benney equations [25], reductions of the dispersionless KP hierarchy related to 2D topological
field theories [26–28], a hydrodynamic reduction of the Boyer–Finley equation [29], etc.

The work of Ferapontov et al [29] is particularly suggestive, because their method is
exactly based on Löwner-type equations and some related equations. They indeed used those
equations to apply Tsarev’s generalized hodograph method [4]. On the other hand, since they
do not use Lax equations, one cannot readily see how to generalize their results to higher
flows of an underlying hierarchy. Therefore it is essential to understand their method in the
perspective of Lax equations.

Bearing these issues in mind, let us briefly look into rational reductions of the universal
Whitham hierarchy. Let us mention that the following consideration is more or less parallel
to the approach that Gibbons et al followed in the case of the Benney equations [2, 3, 5].

Setup of rational reduction. In a rational reduction, we assume that there is a rational
function

E(p) = pk0 +
k0∑

n=2

a0np
k0−n +

N∑
α=1

kα∑
n=1

aαn

(p − qα)n
,

with poles at p = ∞, q1, . . . , qN such that z0(p) and zα(p), α = 1, . . . , N , are given by
Laurent expansion of fractional powers of E(p) as

z0(p) = E(p)1/k0 (Laurent expansion at p = ∞)

zα(p) = E(p)1/kα (Laurent expansion at p = qα).

Actually, E(p) can have extra (dynamical) poles other than ∞ and qα’s. This is indeed the case
for, e.g., the Zakharov reductions of the Benney equations and the hydrodynamic reduction of
the Boyer–Finley equations. In those reductions, E(p) takes such a form as

E(p) = p +
M−1∑
k=1

ak

p − bk

,

whereas the Benney equations and the Boyer–Finley equations are embedded into the one-
and two-point universal Whitham hierarchies (in other words, the dispersionless KP and Toda
hierarchy).

In this setup, the critical points

p = pj , E′(pj ) = 0, j = 1, . . . , M,

and the critical values

λj = E(pj ), j = 1, . . . ,M,

of E(p) play the role of driving forces and Riemann invariants. More precisely, if E(p) is
sufficiently general, the critical values λj ’s can be used as full parameters (or ‘moduli’) of
E(p). Thus E(p) is understood to be a function E(p,λ) of p and λ = (λ1, . . . , λM).
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Hydrodynamic equations for λj . The Lax equations (2) for the z-functions reduce to the
Lax equations

∂αnE(p) = {
αn,E(p)} (α = 0, 1, . . . , N) (46)

for E(p). Written more explicitly, these equations read

∂αnE(p) = 
′
αn(p)∂01E(p) − E′(p)∂01
αn(p).

Letting p = pj in this equation yields the equation

∂αnE(p)|p=pj
= 
′

αn(pj )∂01E(p)|p=pj
.

On the other hand, by the chain rule, differentiating λj = E(pj ) by tαn gives the identity

∂αnλj = E′(pj )∂αnpj + ∂αnE(p)|p=pj
= ∂αnE(p)|p=pj

.

Thus we obtain the diagonal hydrodynamic equations

∂αnλj = χαn(λ)∂01λj (α = 0, 1, . . . , N) (47)

with characteristic speed

χαn(λ) = 
′
αn(pj ).

Note that pj ’s are now understood to be algebraic functions pj = pj (λ) defined by the
equation E′(p) = 0. Thus (47) may be thought of as a closed evolutionary system for λ. As
we shall show in a more general case, these reduced equations can be solved by the generalized
hodograph method.

Löwner-type equations for E(p). We now consider E(p) to be a function of p and λ = λ(t),
and use the chain rule to rewrite the Lax equations (46). Both hand sides the Lax equations
can be thereby expressed as

LHS =
M∑

j=1

∂E(p)

∂λj

∂αnλj =
M∑

j=1

∂E(p)

∂λj


′
αn(pj )∂01λj

and

RHS =
M∑

j=1

(

′

αn(p)
∂E(p)

∂λj

− E′(p)
∂
αn(p)

∂λj

)
∂01λj ,

where we have used (47) as well. Thus the Lax equations reduce to

M∑
j=1

(
(
′

αn(p) − 
′
αn(pj ))

∂E(p)

∂λj

− E′(p)
∂
αn(p)

∂λj

)
∂01λj = 0.

Consequently, if E(p) = E(p, λ) satisfies the equation

(
′
αn(p) − 
′

αn(pj ))
∂E(p)

∂λj

− E′(p)
∂
αn(p)

∂λj

= 0, (48)

then for any solution λ = λ(t) of (47), E(p)|λ=λ(t) gives a solution of the Lax equation.

Let us examine (48) in more detail. When α = 0 and n = 1, this equation is a trivial
identity. The lowest nontrivial one is the case where α = 0 and n = 2. In this case, since

02(p) = p2 + 2u02, (48) reduces to

(p − pj )
∂E(p)

∂λj

− E′(p)
∂u02

∂λj

= 0
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or, equivalently,

∂E(p)

∂λj

= E′(p)

p − pj

∂u02

∂λj

. (49)

This is exactly a Löwner-type equation. We can readily derive the equations

∂zα(p)

∂λj

= z′
α(p)

p − pj

∂u02

∂λj

(50)

for the zα(p)’s, because the z-functions are given by fractional powers of E(p). The p-
functions, in turn, satisfy the dual equations

∂pα(z)

∂λj

= 1

pj − pα(z)

∂u02

∂λj

. (51)

As regards the case for n > 2, (48) turn out to be redundant, namely, automatically
satisfied if (49) is satisfied. This fact can be explained in a more general form; we shall return
to this issue in section 6.2.

6. Multi-variable reductions

In view of the foregoing interpretation of rational reductions, it is now rather straightforward
to find a correct formulation of general multi-variable reductions. In this section, we present
this formulation and its implications. After all, this reduction procedure is nothing but the
‘diagonal reduction’ in the sense of Guil et al [9]. We, however, attempt to reformulate it
along the lines that we have pursued in the case of one-variable reduction.

6.1. Löwner-type equations for pα(z) and zα(p)

In an M-variable reduction, the fundamental dynamical variables uαn (n = 0, 1, . . . , uα0 = rα)

and qα are assumed to be functions of M-dimensional reduced dynamical variables λ =
(λ1, . . . , λM). The reduced dynamical variables, in turn, depend on t as λ = λ(t) and
eventually satisfy a set of diagonal hydrodynamic evolution equations.

Accordingly, the p-functions pα(z) and the z-functions zα(p), α = 0, 1, . . . , N , are
functions of p and λ,

zα(p) = zα(p,λ), pα(z) = pα(z,λ).

We assume that these functions satisfy the Löwner-type equations

∂pα(z)

∂λj

= 1

Uj − pα(z)

∂u02

∂λj

, j = 1, . . . , M, (52)

or the dual equations

∂zα(p)

∂λj

= z′
α(p)

p − Uj

∂u02

∂λj

, j = 1, . . . ,M, (53)

for a given set of driving forces Uj = Uj(λ) and the auxiliary function u02 = u02(λ). Unlike
the one-variable case, these auxiliary functions have to satisfy a set of integrability conditions.
We shall present these conditions later on when we consider the hodograph method.

As in the case of one-variable reduction, the dual equations (53) imply that the z-functions
are functionally related to each other by functions fα(z) of one variable z as (34) shows.
Though Guil et al [9] further assumed the special form (35), the following consideration is
not limited to that case.
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As a consequence of these Löwner-type equations, zα(p)’s turn out to have critical points
at p = Uj , namely,

z′
α(Uj ) = 0. (54)

This is an immediate consequence of the structure of (53). Since the left-hand side has no
singularity at p = Uj , the pole of 1/(p−Uj) at p = Uj has to be canceled by a zero of z′

α(p).
This, however, does not imply that the critical values zα(Uj ) coincide with λj ’s. This is in
accord with the general fact that the choice of Riemann invariants is not unique but allows
large arbitrariness. A standard way will be to choose the critical values z0(Uj ) of z0(z) as
λj ’s; the critical values zα(Uj ) of the other z-functions are then functionally related to z0(Uj )

as (34) implies.

6.2. Hydrodynamic equations for λj

In view of the results on one-variable and rational reductions, it seems plausible that the
reduced variables λ = λ(t) satisfy diagonal hydrodynamic equations of the form

∂αnλj = χαnj (λ)∂01λj (55)

with characteristic speeds

χαnj (λ) = 
′
αn(Uj ).

The relation between the Lax equations (2) and these equations, however, is more delicate than
in the case of rational reductions, because λj ’s in the present setup are not assumed to be given
by the critical values of the z-functions. Therefore we cannot derive (55) by simply letting
p = Uj in the Lax equations. Nevertheless, we can confirm that (55) are correct equations to
be satisfied by λ = λ(t).

Theorem 4. If (52) (or (53)) and (55) are satisfied, then the Lax equations (2) are also
satisfied.

Although this theorem can also be deduced from some other results that we shall show
later on (theorem 6 and theorem 7) , we dare to present a direct proof here. The outline of the
proof is parallel to the case of rational reductions. A clue is the following:

Lemma 1. If pα(z)’s satisfy (52), then 
αn(p)’s satisfy the identities

∂
αn(p)

∂λj

= 
′
αn(p) − 
′

αn(Uj )

p − Uj

∂u02

∂λj

. (56)

Proof. Let us first consider the case where α = 0. We differentiate the generating function
(23) of 
0n(p)’s by λj and use (52). This yields the identity

−
∞∑

n=1

z−n

n

∂
0n(p)

∂λj

= 1

p0(z) − p

∂p0(z)

∂λj

= − 1

(p − p0(z))(Uj − p0(z))

∂u02

∂λj

.

On the other hand, the kernel formula (24) implies another identity of the form

−
∞∑

n=1

z−n

n
(
′

0n(p) − 
′
0n(Uj )) = 1

p − p0(z)
− 1

Uj − p0(z)

= Uj − p

(p − p0(z))(Uj − p0(z))
.
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By comparing these identities, we find the identity
∞∑

n=1

z−n

n

∂
0n(p)

∂λj

=
∞∑

n=1

z−n

n


′
0n(p) − 
′

α0(Uj )

p − Uj

,

which implies that (56) holds for α = 0. In much the same way using the second kernel
formula (25), we can derive (56) for α = 1, . . . , N . �

Proof of theorem 4. The reasoning in the case of rational reductions also works in this case
with slightest modification. Firstly, using (55) and the chain rule, we can rewrite the Lax
equations (2) as

M∑
j=1

(
(
′

αn(p) − 
′
αn(Uj ))

∂zβ(p)

∂λj

− z′
β(p)

∂
αn(p)

∂λj

)
∂01λj = 0.

On the other hand, combining equations (53) for zβ(p) with the identity (56) of the lemma
yields the equations

∂zβ(p)

∂λj

= z′
β(p)


′
αn(p) − 
′

αn(Uj )

∂
αn(p)

∂λj

, (57)

which implies that the last equations are indeed satisfied. �

Let us note that the last equations (57) amount to (48) in the previous section. As
mentioned therein, (48) contains the Löwner-type equations (49) as a special case with α = 0
and n = 2. In the present setup, (53) is a special case of (57) with α = 0 and n = 2. By the
way, lemma 1 (or its proof) says that (57) is a consequence of (53). This explains why (48)
are ‘redundant’ in the setup of the last section.

6.3. Hodograph method

The hydrodynamic equations (55) can be solved by Tsarev’s hodograph method [4]. As it turns
out below, this is a straightforward generalization of the framework developed by Gibbons
and Tsarev [2, 3] for reductions of the Benney equations.

In the multi-variable case, (52) and (53) have to satisfy a set of integrability conditions.
As regards (52), the integrability conditions can be derived by eliminating the λ-derivatives
of pα(z) from the identity

∂

∂λj

(
1

Uk − pα(z)

∂u02

∂λk

)
= ∂

∂λk

(
1

Uj − pα(z)

∂u02

∂λj

)
.

After some algebra, these conditions reduce to the equations

∂Uk

∂λj

= 1

Uj − Uk

∂u02

∂λj

,

(58)
∂2u02

∂λj∂λk

= 2

(Uj − Uk)2

∂u02

∂λj

∂u02

∂λk

,

which take exactly the same form as the equations derived by Gibbons and Tsarev in the case
of the Benney equations. The same equations can be derived from the integrability conditions[

∂

∂λj

− 1

p − Uj

∂u02

∂λj

∂

∂p
,

∂

∂λk

− 1

p − Uk

∂u02

∂λk

∂

∂p

]
= 0 (59)

of the dual equations (53) as well.

20



J. Phys. A: Math. Theor. 41 (2008) 475206 K Takasaki and T Takebe

An important consequence of these equations is the following:

Lemma 2. The characteristic speeds χαnj = χαnj (λ) of (55) satisfy the equations

∂χαnk

∂λj

= (χαnj − χαnk)Vjk, (60)

where

Vjk = 1

(Uj − Uk)2

∂u02

∂λj

. (61)

Proof. Let us first consider the case where α = 0. Substituting q = Uk in the kernel formula
(24), yields the identity

−
∞∑

n=1

z−n

n
χ0nk = 1

Uk − p0(z)
.

We now differentiate both hand sides by λj . Using (52) and (58), we can rewrite the outcome
as

−
∞∑

n=1

z−n

n

∂χ0nk

∂λj

= − 1

(Uk − p0(z))2

(
∂Uk

∂λj

− ∂p0(z)

∂λj

)

= − 1

(Uk − p0(z))2

(
1

Uj − Uk

− 1

Uj − p0(z)

)
∂u02

∂λj

= − 1

(Uk − p0(z))(Uj − p0(z))(Uj − Uk)

∂u02

∂λj

=
(

1

Uj − p0(z)
− 1

Uk − p0(z)

)
1

(Uj − Uk)2

∂u02

∂λj

= −
∞∑

n=1

z−n

n
(χαnj − χαnk)

1

(Uj − Uk)2

∂u02

∂λj

.

This shows that (60) are indeed satisfied for α = 0. We can confirm (60) for α = 1, . . . , N in
the same way, now using the second kernel formula (25). �

We can now formulate the hodograph method for (55) as follows.

Theorem 5. Let Fj = Fj (λ), j = 1, . . . ,M , be a set of functions of λ that satisfy the
equations

∂Fk

∂λj

= (Fj − Fk)Vjk, (62)

and λ = λ(t) a solution of the hodograph equations

∞∑
n=1

t0nχ0nj (λ) +
N∑

α=1

∞∑
n=0

tαnχαnj (λ) = Fj (λ), j = 1, . . . , N. (63)

Further assume that the regularity conditions

∞∑
n=1

t0n

∂χ0nj (λ)

∂λj

+
N∑

α=1

∞∑
n=0

tαn

∂χαnj (λ)

∂λj

�= ∂Fj (λ)

∂λj

, j = 1, . . . , N, (64)

hold for λ = λ(t). Then λ = λ(t) satisfies the hydrodynamic equations (55).
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Proof. We differentiate both hand sides of (63) by tαn. By the chain rule, this yields the
equations

χαnj +
M∑

k=1

⎛
⎝ ∞∑

m=1

t0m

∂χ0mj

∂λk

+
N∑

β=1

∑
m=0

tβm

∂χβmj

∂λk

⎞
⎠ ∂αnλk =

M∑
k=1

∂Fj

∂λk

∂αnλk,

hence

χαnj =
M∑

k=1

⎛
⎝∂Fj

∂λk

−
∞∑

m=1

t0m

∂χ0mj

∂λk

−
N∑

β=1

∞∑
m=0

tβm

∂χβmj

∂λk

⎞
⎠ ∂αnλk.

Let us examine the quantity inside the parenthesis on the right-hand side. If k �= j , we can
use (60) and (62) to rewrite this quantity as

∂Fj

∂λk

−
∞∑

m=1

t0m

∂χ0mj

∂λk

−
N∑

β=1

∞∑
m=0

tβm

∂χβmj

∂λk

= (Fk − Fj )Vkj −
∞∑

m=1

t0m(χ0mk − χ0mj )Vkj −
N∑

β=1

∞∑
m=0

tβm(χβmk − χβmj )Vkj

=
⎛
⎝Fk −

∞∑
m=1

t0mχ0mk −
N∑

β=1

∞∑
m=0

tβmχβmk − (k replaced with j)

⎞
⎠Vkj

which vanishes by (63). Thus the last equation simplifies as

χαnj =
⎛
⎝∂Fj

∂λj

−
∞∑

m=1

t0m

∂χ0mj

∂λj

−
N∑

β=1

∞∑
m=0

tβm

∂χβmj

∂λj

⎞
⎠ ∂αnλj .

Moreover, if α = 0 and n = 2, this equation reduces to

1 =
⎛
⎝∂Fj

∂λj

−
∞∑

m=1

t0m

∂χ0mj

∂λj

−
N∑

β=1

∞∑
m=0

tβm

∂χβmj

∂λj

⎞
⎠ ∂01λj .

If we multiply the last equation by χαnj and subtract it from the previous one, the outcome is
the equation

0 =
⎛
⎝∂Fj

∂λj

−
∞∑

m=1

t0m

∂χ0mj

∂λj

−
N∑

β=1

∞∑
m=0

tβm

∂χβmj

∂λj

⎞
⎠ (∂αnλj − χαnj ∂01λj ).

By the regularity condition, we can drop the prefactor of χαnλj − χαnj ∂01λj and obtain the
hydrodynamic equations (55). �

We are thus eventually left with the problem of finding Fj ’s that satisfy (62). Such
functions are given by contour integrals of the form

Fj =
N∑

α=0

∮
Cα

dp

2π i

Gα(zα(p))

(p − Uj)2
, (65)

where Gα(z) is an arbitrary holomorphic function of one variable z defined on the range of the
map p �→ zα(p), and Cα is a closed curve (or cycle) in the domain of zα(p). It is not difficult
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to show that these Fj ’s satisfy (62) as a consequence of (53). Note that the characteristic
speeds χαnj themselves have such a contour integral representation as

χαnj =
∮

dp

2π i

zα(p)n

(p − Uj)2
, (66)

where the path of integral is a small circle encircling the point p = ∞ (α = 0) or p = qα

(α = 1, . . . , N).

6.4. Existence of F-function

Theorem 3 and its proof can be generalized to the present setup without substantial
modifications.

Theorem 6. The integrability conditions (30) of (29) are satisfied in the foregoing setup of
multi-variable reduction. The F-function F = F(t) thus defined by (29) gives a solution of
the dispersionless Hirota equations (22).

Proof. We can proceed just as in the proof of theorem 3. By applying D̂γ (z) to the generating
functions (27), we obtain the generating functions

D̂γ (z3)(pα(z1) − pβ(z2))

pα(z1) − pβ(z2)
= −

∑
l,m,n

z−l
1 z−m

2 z−n
3 ∂̂γ nbαlβm

of derivatives of the Grunsky coefficients. By the kernel formulae (24) and (25), the
hydrodynamic equations (55) can be cast into the generating functional form

D̂α(z)λj = ∂01λj

pα(z) − Uj

.

We can thereby rewrite the foregoing generating function as

D̂γ (z3)(pα(z1) − pβ(z2))

pα(z1) − pβ(z2)
= −

M∑
j=1

∂01λj

(Uj − pα(z1))(Uj − pβ(z2))(Uj − pγ (z3))

∂u02

∂λj

.

This implies the functional identity

D̂γ (z3)(pα(z1) − pβ(z2))

pα(z1) − pβ(z2)
= D̂α(z1)(pγ (z3) − pβ(z2))

pγ (z3) − pβ(z2)
.

The integrability conditions (30) follow from this identity immediately. The rest of the
statement of the theorem is a consequence of the comments in the end of section 2.4. �

As a byproduct of this proof, we obtain the following generalization of (45) to multi-
variable reductions:

∑
l,m,n

z−l
1 z−m

2 z−n
3 ∂̂αl ∂̂βm∂̂γ nF = −

M∑
j=1

∂01λj

(Uj − pα(z1))(Uj − pβ(z2))(Uj − pγ (z3))

∂u02

∂λj

. (67)

7. S-functions in multi-variable reductions

As an application of the foregoing formulation of multi-variable reductions, we now reconsider
the construction of S-functions by Guil et al [9]. As it turns out below, some part of their
construction can be made more transparent with the aid of the identities (56) of lemma 1.
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The construction of S-functions by Guil et al is based on hodograph solutions of the
hydrodynamic equations (55). Given such a solution along with the p-functions satisfying
(52), they construct the S-function in such a form as

Sβ(p) =
∞∑

n=1

t0n
0n(p) +
N∑

α=1

∞∑
n=0

tαn
αn(p) + Sβ−(p) (68)

or, equivalently,

Sβ(z) =
∞∑

n=1

t0n
0n(pβ(z)) +
N∑

α=1

∞∑
n=0

tαn
αn(pβ(z)) + Sβ−(pβ(z)), (69)

where Sβ−(p) are required to satisfy the equations(
∂

∂λj

− 1

p − Uj

∂u02

∂λj

∂

∂p

)
Sβ−(p) = − Fj

p − Uj

∂u02

∂λj

. (70)

Since the differential operators on the left-hand side are commutative, see (59), the integrability
conditions of these inhomogeneous Löwner equations are given by(

∂

∂λj

− 1

p − Uj

∂u02

∂λj

∂

∂p

) (
Fk

p − Uk

∂u02

∂λk

)
=

(
∂

∂λk

− 1

p − Uk

∂u02

∂λk

∂

∂p

) (
Fj

p − Uj

∂u02

∂λj

)
.

By straightforward calculations, one can see that these conditions are equivalent to
equations (62) for Fj ’s. Thus the existence of a solution to (70) is ensured in the setup
of the hodograph solution. With these definitions, the main part of the results of Guil et al can
be stated as follows:

Theorem 7 (Guil et al [9]). The S-functions Sβ(z), β = 0, 1, . . . , N , satisfy the Hamilton–
Jacobi equations (14).

Let us prove this theorem using our tools. Firstly, by the chain rule, the tαn-derivative of
Sβ(z) can be expanded as

∂αnSβ(z) = 
αn(pβ(z)) +
M∑

j=1

∑
γ,m

tγm

(

′

γm(pβ(z))
∂pβ(z)

∂λj

+
∂
γm(p)

∂λj

∣∣∣∣
p=pβ(z)

)
∂αnλj

+
M∑

j=1

(
S ′

β−(pβ(z))
∂pβ(z)

∂λj

+
∂Sβ−(p)

∂λj

∣∣∣∣
p=pβ(z)

)
∂αnλj , (71)

where we have used the abbreviated notation

∑
γm

Aγm =
∞∑

m=1

A0m +
N∑

γ=1

∞∑
m=0

Aγm.

Using the Löwner-like equations (52) and the identity (56) of lemma 1, we can calculate the
quantity in the first parenthesis on the right-hand side of (71) as


′
γm(pβ(z))

∂pβ(z)

∂λj

+
∂
γm(p)

∂λj

∣∣∣∣
p=pβ(z)

= 
′
γm(pβ(z))

U − pβ(z)

∂u02

∂λj

+

′

γm(pβ(z)) − 
′
γm(Uj )

pβ(z) − Uj

∂u02

∂λj

= − 
′
γm(Uj )

pβ(z) − Uj

∂u02

∂λj

.
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As regards the quantity in the second parenthesis, we use equations (70) satisfied by Sβ−(z)

as

S ′
β−(pβ(z))

∂pβ(z)

∂λj

+
∂Sβ−(p)

∂λj

∣∣∣∣
p=pβ(z)

= S ′
β−(pβ(z))

Uj − pβ(z)

∂u02

∂λj

+
∂Sβ−(p)

∂λj

∣∣∣∣
p=pβ(z)

=
(

1

Uj − p

∂u02

∂λj

∂Sβ−(p)

∂p
+

∂Sβ−(p)

∂λj

)∣∣∣∣
p=pβ(z)

= − Fj

pβ(z) − Uj

∂u02

∂λj

.

Consequently, (71) turns into an equation of the form

∂αnSβ(z) = 
αn(pβ(z)) +
M∑

j=1

(∑
γm

tγm
′
γm(Uj ) + Fj

)
∂αnλj

pβ(z) − Uj

∂u02

∂λj

.

Since each term of the sum on the right-hand side vanishes by the hodograph equations (63),
we have the equation

∂αnSβ(z) = 
αn(pβ(z)).

In the case where α = 0 and n = 1, this equation reduces to

∂01Sβ(z) = pβ(z),

by which we can eliminate pβ(z) from the last equation and obtain the Hamilton–Jacobi
equations (14).

This completes the proof of the theorem. Note that using the identities (56) makes the
proof shorter and more understandable than the original proof of Guil et al.

8. Conclusion

We have thus seen that Löwner-type equations play a fundamental role in finite variable
reductions of the universal Whitham hierarchy of genus zero. The status of dispersionless
Hirota equations therein is more subtle. As regards the one-variable reduction, the
dispersionless Hirota equations (22) are certainly a clue. The generating functional form
(26) of these equations enabled us to derive the Löwner-type equations (31) and (32) directly
from the assumption that all dynamical variables are functions of a single reduced variable λ.
Unfortunately, this method does not work for multi-variable reductions. Therefore we were
forced to start from (rather than derive) the Löwner-type equations (52) and (53) and to confirm
that they are a correct set of reduction conditions (theorem 4). For both one-variable and the
multi-variable reductions, however, we could eventually justify the reduction procedure in a
unified way, namely, by proving that the defining equations (29) of the F-function is integrable
(theorems 3 and 6). This is a place where the dispersionless Hirota equations play a truly
fundamental role.

Viewed from a technical point of view, another clue of our method is the use of the
generating functions (23) and (27) and various identities derived therefrom. Not only being
closely related to the dispersionless Hirota equations themselves, these generating functions
turned out to be also extremely useful in many aspects of finite variable reductions.

Our next target will be, naturally, the cases of nonzero genera [13]. It will be rather
easy to derive dispersionless Hirota equations for those cases, as partly argued by Krichever
et al in a different setup [30]. A main problem is to find a correct form of Löwner-type
equations. We expect to find a prototype in differential geometry of Hurwitz spaces [31, 32]
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and associated Whitham-type hierarchies [13, 27], because they are generalizations of the
rational reductions that we considered as a prototype of general multi-variable reductions for
the genus zero case. Presumably, we should start with the genus one case, for which an explicit
description of Hurwitz spaces are available in the literature [31, 33–35] along with a candidate
of Löwner-type equations [36].
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